Modeling biased information seeking with second order probability distributions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expected Utility from Multinomial Second-order Probability Distributions

We consider the problem of maximizing expected utility when utilities and probabilities are given by discrete probability distributions so that expected utility is a discrete stochastic variable. As for discrete second-order distributions, that is probability distributions where the variables are themselves probabilities, the multinomial family is a reasonable choice at least if first-order pro...

متن کامل

Discrete Second-order Probability Distributions that Factor into Marginals

In realistic decision problems there is more often than not uncertainty in the background information. As for representation of uncertain or imprecise probability values, second-order probability, i.e. probability distributions over probabilities, offers an option. With a subjective view of probability second-order probability would seem to be impractical since it is hard for a person to constr...

متن کامل

Modeling Probability Distributions with Predictive

OF THE DISSERTATION Modeling Probability Distributions with Predictive State Representations

متن کامل

Second-order probability matching priors

The paper considers priors obtained by ensuring approximate frequentist validity of (a) posterior quantiles, and of (b) the posterior distribution function. It is seen that, at the second order of approximation, the two approaches do not necessarily lead to identical conclusions. Examples are given to illustrate this. The role of invariance in the context of probability matching is also discussed.

متن کامل

Efficient approximation of probability distributions with k-order decomposable models

During the last decades several learning algorithms have been proposed to learn probability distributions based on decomposable models. Some of these algorithms can be used to search for a maximum likelihood decomposable model with a given maximum clique size, k. Unfortunately, the problem of learning a maximum likelihood decomposable model given a maximum clique size is NP-hard for k > 2. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kybernetika

سال: 2015

ISSN: 0023-5954,1805-949X

DOI: 10.14736/kyb-2015-3-0469